
Langage R

Nicolas Baradel

nicolas.baradel@polytechnique.edu

1

Plan

Introduction

Premiers pas

Les conditionnelles

Les boucles

Les fonctions

Les variables

Les objets

Fonctions usuelles

Programmation efficace

Simulation de variables aléatoires

Nicolas Baradel | Langage R

2

Introduction
R en quelques mots

I R est un langage interprété ;
I R se programme de manière vectorielle ;
I R orienté pour les applications en statistiques et en

probabilités.

Nicolas Baradel | Langage R

3

Introduction
Où trouver R

I R se télécharge à https://cran.r-project.org/ ;
I La version 64-bit ne fonctionne que sur les systèmes 64-bit, la

version 32-bit fonctionne sur les deux systèmes ;
I Dans la version 32-bit, R ne peut allouer qu’environ 3 Go de

mémoire vive ;
I Tous les systèmes d’exploitations modernes sont en 64-bit :

téléchargez la version 64-bit.

Nicolas Baradel | Langage R

https://cran.r-project.org/

4

Introduction
Comment utiliser R

I R dispose de Rgui qui est une console R légèrement plus
avancée ;

I Rgui dispose d’un système de gestion de scripts R ;
I Rgui est minimal, notamment la version Windows ;
I Il existe RCode : un système moderne de gestion de projets R ;
I RCode se télécharge à https://pgm-solutions.com/rcode/.

Nicolas Baradel | Langage R

https://pgm-solutions.com/rcode/

5

Introduction
Comment utiliser R

Nicolas Baradel | Langage R

6

Introduction
Comment utiliser R

I Il existe RCode : un système moderne de gestion de projets R ;
I RCode se télécharge à https://pgm-solutions.com/rcode/

Nicolas Baradel | Langage R

https://pgm-solutions.com/rcode/

7

Introduction
Comment utiliser R

Nicolas Baradel | Langage R

8

Introduction
Comment utiliser R

RCode se décompose en les vues :
I : un dossier contenant votre projet ;
I : pour éditer le code ;
I : pour interagir avec R ;
I : pour charger et installer des packages ;
I : utilisé pour l’aide de R et afficher les sorties HTML ;
I : affiche l’historique des commandes envoyées à R ;
I : affiche en temps réel les variables instanciées dans

R et permet leur visualisation / édition.

Nicolas Baradel | Langage R

9

Premiers pas
Opérations élémentaires

I 1

[1] 1

I "R"

[1] "R"

I 5+7

[1] 12

I 1+(1+1/2*(1+1/3*(1+1/4*(1+1/5))))

[1] 2.716667

I TRUE

[1] TRUE

Nicolas Baradel | Langage R

10

Premiers pas
Affectation

I R a un typage faible ;
I On ne précise pas le type, mais toutes les variables ont un type

implicite ;
I L’affectation se fait avec = ou <-

I x = 3

x

[1] 3

I y <- 4

y

[1] 4

I (z <- x�y)

[1] 81

I On préféra <- qui est l’opérateur d’affectation standard de R.

Nicolas Baradel | Langage R

11

Premiers pas
Type des variables

I La fonction typeof permet d’obtenir le type d’une variable sous
la forme d’une chaîne de caractères.

I x <- "R"

typeof(x)

[1] "character"

I typeof(TRUE)

[1] "logical"

I typeof(pi)

[1] "double"

I typeof(5)

[1] "double"

Nicolas Baradel | Langage R

12

Les conditionnelles
Booléens

I Les booléens sont les variables de type logical ;
I Il y a TRUE et FALSE ;
I L’opérateur && correspond au ET logique ;
I TRUE && FALSE

[1] FALSE

I L’opérateur || correspond au OU logique ;
I TRUE || FALSE

[1] TRUE

I L’opérateur ! correspond au NON logique ;
I !TRUE

[1] FALSE

Nicolas Baradel | Langage R

13

Les conditionnelles
If

I Une condition se fait avec if de la manière suivante :
if(condition)

{

instructions

}

I condition est un booléen qui vaut TRUE ou FALSE ;
I Le bloc instructions est exécuté si et seulement si condition

vaut TRUE ;

Nicolas Baradel | Langage R

14

Les conditionnelles
If

I x <- 7 #Ceci est un commentaire

if(x %% 2 == 1) #Si x modulo 2 est égal à 1

{

cat("x est impair\n") #cat permet d'écrire dans la

console, \n permet de faire un retour à la ligne

}

x est impair

I Il est possible d’ajouter des instructions si la condition n’est pas
réalisée avec le mot-clé else.

I Toutefois, si on ajoute else ici à la suite, on obtiendra une erreur
car R aura déjà exécuté le if et aura terminé cette instruction.

I Soit on encadre la condition par des accolades, soit on écrit le
mot-clé else sur la même ligne que l’accolade fermante du if.

Nicolas Baradel | Langage R

15

Les conditionnelles
else

I x <- x + 1 #x <- 8

if(x %% 2 == 1) #FALSE

{

cat("x est impair\n")

} else

{

cat("x est pair\n")

}

x est pair

Nicolas Baradel | Langage R

16

Les boucles
for

I Une boucle for est une instruction qui est réalisée sur un
ensemble i ∈ I. Le plus courant est d’effectuer une instruction
sur i ∈ {1,2, . . . ,n} pour n ∈ N∗. À cette fin, l’opérateur :
complète par les entiers entre le membre de gauche et le
membre de droite :

I 1:5

[1] 1 2 3 4 5

I Il s’agit d’un vecteur que nous verrons plus loin, ici I est
{1,2, . . . ,5} représenté par 1:5. La boucle for a la sémantique :

I for(i in I)

{

instructions

}

Nicolas Baradel | Langage R

17

Les boucles
for

I I <- 1:5

I for(i in I)

{

cat(paste0("Itération i = ", i, "\n")) #paste0

permet de concaténer des chaînes de charactères

}

Itération i = 1

Itération i = 2

Itération i = 3

Itération i = 4

Itération i = 5

Nicolas Baradel | Langage R

18

Les boucles
while

I La boucle while permet de répéter une instruction tant qu’une
condition est vérifiée. Sa syntaxe est :

I while(condition)

{

instructions

}

I Une boucle for peut toujours s’écrire comme une boucle while :
I i <- 1

while(i <= n)

{

instructions

i <- i+1

}

I Attention aux boucles infinies avec while.

Nicolas Baradel | Langage R

19

Les boucles
while

I n <- 123456789

I i <- 2

{

while(n != 1) #Tant que n est différent de 1

{

if(n %% i == 0)

{

cat(paste0(i, " "))

n <- n %/% i #Division euclidienne (entière)

}

else

i <- i+1

}

cat("\n")

}

3 3 3607 3803

Nicolas Baradel | Langage R

20

Les fonctions

I Une fonction prend une ou plusieurs valeurs et retourne une
variable ;

I Une fonction peut ne rien retourner, elle peut aussi ne pas
prendre d’argument.

I nomfonction <- function(arg1, ..., argn)

{

instructions

}

I L’appel se fait :
I nomfonction(x1, ..., xn)

I Si la fonction renvoie une valeur, elle se termine par return ; dès
qu’un return est rencontré, l’execution de la fonction s’arrête.

I Par exemple, return("R") permet de retourner la chaîne de
caractère "R".

Nicolas Baradel | Langage R

21

Les fonctions

I R contient beaucoup de fonctions ;
I sqrt(2) #fonction racine carrée

[1] 1.414214

I sum(1:100) #sum prend un vecteur en argument (que nous

verrons au chapitre suivant) et renvoie la somme des

éléments

[1] 5050

I Mettons le code qui décomposait en nombres premiers en
fonction.

Nicolas Baradel | Langage R

22

Les fonctions

I premiers <- function(n)

{

i <- 2

while(n != 1)

{

if(n %% i == 0)

{

cat(paste0(i, " "))

n <- n %/% i

}

else

i <- i+1

}

cat("\n")

}

I premiers(123456789)

3 3 3607 3803

Nicolas Baradel | Langage R

23

Exercices
Énoncés

I Écrire une fonction factorielle qui calcule le nombre factoriel
d’un entier naturel ; la fonction de R qui fait ça est factorial ;

I Écrire une fonction gammaEuler qui approxime à l’ordre n ∈ N∗ la
constante γ d’Euler définie par la limite :

γ = lim
n→+∞

(
n∑

k=1

1
k
− log(n)

)
.

On pourra vérifier avec -digamma(1) qui vaut γ.

Nicolas Baradel | Langage R

24

Exercices
Énoncés

I Écrire une fonction qui calcule le n-ème élément de la suite de
Fibonacci de valeur initiale u0 et u1 en mettant les valeurs par
défaut :u0 = 0,u1 = 1. La suite de Fibonacci est définie par :

U0 = u0,

U1 = u1,

Un+2 = Un+1 + Un, n ≥ 0.

Nicolas Baradel | Langage R

25

Exercices
Corrections

I facto <- function(n)

{

if(n == 0)

return(1)

fac <- 1

for(i in 1:n)

fac <- fac * i

return(fac)

}

Nicolas Baradel | Langage R

26

Exercices
Corrections

I gammaEuler <- function(n)

{

gamma <- - log(n)

for(k in 1:n)

gamma <- gamma + 1/k

return(gamma)

}

Nicolas Baradel | Langage R

27

Exercices
Corrections

I fibonacci <- function(n, u0=0, u1=1)

{

if(n == 0)

return(u0)

if(n == 1)

return(u1)

u <- 0

um1 <- u1

um2 <- u0

for(i in 1:n)

{

u <- um1 + um2

um2 <- um1

um1 <- u

}

return(u)

}

Nicolas Baradel | Langage R

28

Les variables
Les types - numériques

I Le type d’une variable se récupère avec la fonction typeof.
I typeof(2)

[1] "double"

I Le type par défaut des variables numériques est le double.
I L’entier existe, il suffit de mettre le caractère L à la fin du nombre.
I (x <- 1L)

[1] 1

I typeof(x)

[1] "integer"

I De manière générale, ces deux types sont numeric et la fonction
is.numeric renvoie TRUE pour ceux deux types.

I Il est possible de faire un programme R entier sans se soucier de
cela, si besoin, R fera automatiquement les conversions.

I is.numeric(1) && is.numeric(1L)

[1] TRUE

Nicolas Baradel | Langage R

29

Les variables
Les types - booléens

I Le type booléen contient deux alternatives : TRUE et FALSE.
I Il est nommé logical dans R.
I Il existe aussi la valeur NA qui représente une information

indisponible.

Nicolas Baradel | Langage R

30

Les variables
Les types - chaîne de caractères

I Le type character représente les chaînes de caractères.
I L’affectation se fait de la manère suivante :
I s <- "rpgm"

I Pour concaténer une chaîne de caractère, nous utilisons la
fonction paste0 et pour afficher une chaîne de caractère, la
fonction cat.

I cat(paste0(s, "\n"))

rpgm

I La fonction substr permet d’extraire une sous-chaîne de
caractères en indiquant le premier et le dernier caractère.

I substr(s, 2, 4)

[1] "pgm"

Nicolas Baradel | Langage R

31

Les variables
Les types - chaîne de caractères

I Les fonctions tolower et toupper permettent de mettre
respectivement en minuscule et en majuscule une chaîne de
caractères.

I toupper(s)

[1] "RPGM"

I Il existe bien d’autres fonctions de manipulation des chaînes de
caractères.

Nicolas Baradel | Langage R

32

Les variables
Les types - dates

I Le type Date est un type bien utile pour manipuler des données
dont l’une des variable est une date précise.

I Pour créer une date depuis une châine de caractère, on utile la
fonction as.Date de la manière suivante :

I (R <- as.Date("29/02/2000", "%d/%m/%Y"))

[1] "2000-02-29"

I Dans la chaîne de caractères, %d indique la position du jour, %m
celle du mois et %Y celle de l’année.

I La fonction format convertit une date en chaîne de caractères.
I format(R, "%d/%m/%Y")

[1] "29/02/2000"

I La date du jour est donnée par :
I Sys.Date()

[1] "2018-06-12"

Nicolas Baradel | Langage R

33

Les objets
vecteur

I Le vecteur est l’objet fondamental de R.
I Il s’agit d’un regroupement de valeurs de même type.
I Pour créer un vecteur de type double et de taille 3, on écrit :
I (x <- numeric(3))

I [1] 0 0 0

I On peut accéder à un élément en utilisant [] :
I x[1]

[1] 0

I L’indexation démarre à 1 et se fait de 1 à n.

Nicolas Baradel | Langage R

34

Les objets
vecteur

I Un vecteur que nous avons déjà croisé :
I 1:5

[1] 1 2 3 4 5

I La fonction length permet de renvoyer la longueur d’un vecteur.
I length(x)

[1] 3

I Il est possible de concaténer des éléments pour former un
vecteur

I (x <- c(1, 3, 7))

[1] 1 3 7

I Et même de concaténer des vecteurs
I c(x, x)

[1] 1 3 7 1 3 7

Nicolas Baradel | Langage R

35

Les objets
vecteur

I En fait, une variable de taille 1 est représentée comme un
vecteur dans R.

I x <- pi

I x[1]

[1] 3.141593

I length(x)

[1] 1

I La fonction rep permet de créer un vecteur de taille n dont
chaque composante est identique.

I rep(5, 3)

[1] 5 5 5

Nicolas Baradel | Langage R

36

Les objets
vecteur

I La fonction seq (pour sequence) permet de créer une suite de
nombre régulière.

I seq(1, 2, 0.2)

[1] 1.0 1.2 1.4 1.6 1.8 2.0

I seq(0, 1, length=6)

[1] 0.0 0.2 0.4 0.6 0.8 1.0

Nicolas Baradel | Langage R

37

Les objets
vecteur

I Il est possible de donner un vecteur de booléens qui donne les
indices à garder.

I x <- c(1, 3, 5)

x[c(FALSE, TRUE, TRUE)]

[1] 3 5

I Il est possible de donner directement la valeur des indices
choisis.

I x[c(1, 3, 3, 2)]

[1] 1 5 5 3

I Une autre possibilité est d’appeler tous les éléments sauf un. La
syntaxe est x[-a] où a est un indice entier.

I x[-2]

[1] 1 5

Nicolas Baradel | Langage R

38

Les objets
vecteur

La règle suivante est fondamentale sur R.
I Tous les opérateurs (arithmétiques, logiques, etc.) appliqués à

deux vecteurs de même taille renvoient un vecteur de même
taille où l’opérateur a été appliqué élément par élément.

I y <- 0:2

x+y

[1] 1 4 7

x*y

[1] 0 3 10

x�y

[1] 1 3 25

x == y

[1] FALSE FALSE FALSE

Nicolas Baradel | Langage R

39

Les objets
vecteur

Autre règle fondamentale : le recyclage.
I Tous les opérateurs définis précédemment (arithmétiques,

logiques, etc.) appliqués à un vecteur et une variable de taille un
renvoient un vecteur où l’opérateur a été appliqué à la variable et
à tous les éléments du vecteur initial un à un.

I 2*x+1

[1] 3 7 11

x�2

[1] 1 9 25

factorial(x) %% 2

[1] 1 0 0

x <= 2

[1] TRUE FALSE FALSE

Nicolas Baradel | Langage R

40

Les objets
Exercices

I Ecrire une fonction f qui prend n en argument et qui renvoie un
vecteur composé des n + 1 premiers carrés de N.

I Ajoutez un test qui permet de s’assurer que n est un nombre
positif (s’il n’est pas entier, on pourra arrondir à l’inférieur). Pour
cela, on pourra utiliser la fonction stop qui permet d’arrêter le
programme en générant un message d’erreur (en argument) et
as.integer qui renvoie un type entier d’un nombre numérique,
arrondi à l’inférieur s’il n’était pas entier.

Nicolas Baradel | Langage R

41

Les objets
Exercices

I Ecrire une fonction deriv1 qui prend un vecteur x , un pas h, et
qui renvoie un vecteur de taille length(x) - 1 l’approximation
du nombre dérivé :

∂[h]xi :=
xi+1 − xi

h
.

On fera sans boucle.

Nicolas Baradel | Langage R

42

Les objets
Correction

I f <- function(n) ##cas simple: return((0:n)�2)

{

if(is.numeric(n))

{

if(n >= 0)

return((0:as.integer(n))�2)

stop(paste0("Le nombre ", n, " est négatif"))

}

stop(paste0("La valeur ", n, " n'est pas

numérique"))

}

Nicolas Baradel | Langage R

43

Les objets
Correction

I deriv1 <- function(x, h)

return((x[-1] - x[-length(x)])/h)

Nicolas Baradel | Langage R

44

Les objets
matrice

I Une matrice est un vecteur avec une représentation à deux
indices.

I Une matrice se crée avec la fonction matrix dans laquelle on
donne un vecteur, le nombre de lignes, le nombre de colonnes.

I (X <- matrix(1:9, 3, 3))

[,1] [,2] [,3]

[1,] 1 4 7

[2,] 2 5 8

[3,] 3 6 9

I On peut accéder à un élément (i , j) en utilisant [,] :
I X[2, 3]

[1] 8

Nicolas Baradel | Langage R

45

Les objets
matrice

I On peut aussi l’appeler en utilisant un indice de type vecteur, i.e.
on utilisant :

i ′ := j + (i − 1) ∗ nrow
I X[8]

[1] 8

I Il est possible de remplir une matrice par ligne avec l’argument
byrow = TRUE.

I La fonction as.matrix permet de convertir un vecteur de taille n
en une matrice à n lignes et une colonne.

I La fonction t permet d’obtenir la matrice tranposée.
I Le produit matriciel se fait avec %*% et non pas avec *, ce

dernier est le produit des deux matrices élément par élément

Nicolas Baradel | Langage R

46

Les objets
matrice

I Il est possible de construire une matrice diagonale avec diag :
I diag(1:3)

[,1] [,2] [,3]

[1,] 1 0 0

[2,] 0 2 0

[3,] 0 0 3

I La fonction cbind permet de combiner des vecteurs en une
matrice en les plaçant par colonne :

I cbind(rep(1,3), rep(2,3), rep(3,3))

[,1] [,2] [,3]

[1,] 1 2 3

[2,] 1 2 3

[3,] 1 2 3

Nicolas Baradel | Langage R

47

Les objets
matrice

I La fonction rbind fait la même chose mais en plaçant les
vecteurs en ligne

I Il est possible de nommer les lignes et les colonnes en utilisant
l’argument dimnames :

I X <- matrix(1:9, 3, 3, dimnames = list(c("R1", "R2",

"R3"), c("C1", "C2", "C3")))

I X

C1 C2 C3

R1 1 4 7

R2 2 5 8

R3 3 6 9

Nicolas Baradel | Langage R

48

Les objets
matrice

I On peut extraire une ligne ou une colonne sous la forme d’un
vecteur en ne spécifiant que l’indice la ligne ou de la colonne

I X[1,]

C1 C2 C3

1 4 7

I X[, 1]

R1 R2 R3

1 2 3

I On peut aussi utiliser le nom de la ligne ou de la colonne
I X["R1",]

C1 C2 C3

1 4 7

Nicolas Baradel | Langage R

49

Les objets
matrice

I Il est possible de forcer la conservation du type matrix avec
l’argument drop = FALSE

I c(is.matrix(X[1,]), is.matrix(X[1, ,drop=FALSE]))

[1] FALSE TRUE

I dim(X[1, ,drop=FALSE]) #dim renvoie le nombre de

lignes et de colonnes

[1] 1 3

I La fonction length renverra le nombre total d’éléments de la
matrice

I length(X)

[1] 9

I On peut obtenir le nombre de lignes grâce à la fonction nrow et le
nombre de colonnes grâce à la fonction ncol

I c(nrow(X), ncol(X))

[1] 3 3

Nicolas Baradel | Langage R

50

Les objets
data.frame

I Le type data.frame est le type naturelle des matrices de
données

I La matrice a un type unique pour l’ensemble de ses éléments
I La data.frame a un type unique par colonne où chaque colonne

représente une caractéristique et chaque ligne une donnée
I Exemple de data.frame :
I (X <- data.frame(Prenom = c("Joseph", "Augustin"), age

= c(15, 19)))

Prenom age

1 Joseph 15

2 Augustin 19

Nicolas Baradel | Langage R

51

Les objets
data.frame

I Les appels peuvent se faire comme ceux d’une matrice
I X[, "Prenom"]

[1] Joseph Augustin

Levels: Augustin Joseph

I X$age

[1] 15 19

I On remarque que la première ne semble pas représenter une
chaîne de caractères. La fonction str permet de voir le type par
colonne.

I str(X)

'data.frame': 2 obs. of 2 variables:

$ Prenom: Factor w/ 2 levels "Augustin","Joseph": 2 1

$ age : num 15 19

Nicolas Baradel | Langage R

52

Les objets
data.frame

I Par défaut, dans R 3.y.z et antérieurs les chaînes de caractères
sont considérées comme des factor qui représentent des
modalités, pour les régressions.

I Il est possible de forcer à conserver les chaînes de caractères
avec stringsAsFactors = FALSE

I (X <- data.frame(Prenom = c("Joseph", "Augustin"), age

= c(15, 19)), stringsAsFactors = FALSE)

Prenom age

1 Joseph 15

2 Augustin 19

Nicolas Baradel | Langage R

53

Les objets
data.frame

I Mais cette fois, le type est bien character

I str(X)

'data.frame': 2 obs. of 2 variables:

$ Prenom: chr "Joseph" "Augustin"

$ age : num 15 19

I Depuis R 4.0.0 (avril 2020), les chaînes de caractères sont bien
importées en chaîne de caractères.

Nicolas Baradel | Langage R

54

Les objets
Liste

I La liste est un regroupement d’objets arbitraires
I L’exemple suivant illustre la création d’une liste
I (l0 <- list(a = TRUE, b = 1:3))

$a

[1] TRUE

$b

[1] 1 2 3

I L’appel peut se faire par le nom avec $ ou [[]]

I l0$a

[1] TRUE

I l0[["a"]]

[1] TRUE

Nicolas Baradel | Langage R

55

Les objets
Liste

I L’appel peut aussi se faire via l’indice numérique
I l0[[1]]

[1] TRUE

I L’ajout de nouveaux éléments à la liste se fait facilement :
I l0$c <- "s"

I l0$c

[1] "s"

Nicolas Baradel | Langage R

56

Les objets
Exercices

I Si la fonction dim de R est appliquée à un vecteur, elle renvoie
NULL. Si elle est appliquée à une matrice de taille n ×m, elle
renvoie n et m. Écrire une fonction DIM qui renvoie la taille du
vecteur entré en argument (si l’argument est un vecteur) et la
valeur habituelle de dim sinon.

I Écrire une fonction qui teste le type de l’argument. Si celui-ci est
un vecteur, la fonction renvoie le dernier élément. Si celui-ci est
une matrice, la fonction renvoie le dernier élément de la première
ligne.

Nicolas Baradel | Langage R

57

Fonctions usuelles

I sign : fonction signe, renvoie 1 si l’argument est positif, 0 s’il est
nul, -1 s’il est négatif ;

I abs : fonction valeur absolue ;
I sqrt : fonction racine carrée ;
I exp : fonction exponentielle ;
I log : fonction logarithme, le second argument (base) est la base

du logarithme ;
I log2, log10 : logarithme de base 2 et 10 ;
I expm1 : fonction x 7→ exp(x)− 1 ;
I log1p : fonction x 7→ log(1 + x) ;

Nicolas Baradel | Langage R

58

Fonctions usuelles

I cos : fonction cosinus ;
I sin : fonction sinus ;
I tan : fonction tangente ;
I acos : fonction arccosinus ;
I asin : fonction arcsinus ;
I atan : fonction arctangente ;
I cosh : fonction cosinus hyperbolique, x 7→ ex+e−x

2 ;

I sinh : fonction sinus hyperbolique, x 7→ ex−e−x

2 ;

I tanh : fonction tangente hyperbolique, x 7→ sinh(x)
cosh(x) ;

Nicolas Baradel | Langage R

59

Fonctions usuelles

I sort : trie un vecteur ;
I order : renvoie les indices d’un vecteur de tel sorte que

x[order(x)] renvoie sort(x) ;
I which.min : renvoie l’indice du minimum d’un vecteur ;
I which.max : renvoie l’indice du maximum d’un vecteur ;
I sum : renvoie la somme d’un vecteur ;
I mean : renvoie la moyenne d’un vecteur ;
I var : renvoie la variance d’un vecteur ;

Nicolas Baradel | Langage R

60

Exercices
Énoncés

I Soit X une variable aléatoire dont la densité est définie par la
fonction f :

∀x ∈ R, f (x) =
1√

2π(1 + x2)
exp

(
− tan2(x)

2

)
1]−π

2 ,
π
2 [(x)

où 1 est la fonction indicatrice (elle vaut 1 si x est dans
l’intervalle, 0 sinon). Écrire la fonction f sous R.

Nicolas Baradel | Langage R

61

Exercices
Énoncés

I On suppose avoir la matrice suivante :
I X <- cbind(c(1,2,1,3,2), c(121, 256, 842, 510, 82),

c(1, 2, 3, 4, 5), c(5, 11, 2, 7, 3))

I Trier la matrice par ordre croissant selon la première colonne et,
en cas d’égalité, selon la deuxième colonne (toujours par ordre
croissant).

Nicolas Baradel | Langage R

62

Exercices
Correction

I f <- function(x)

{

if(x > -pi/2 && x < pi/2)

return(exp(-0.5*tan(x)�2)/(sqrt(2*pi)*(1+x�2)))

return(0)

}

I X <- cbind(c(1, 2, 1, 3, 1), c(121, 256, 842, 510,

82), 1:5, c(5, 11, 2, 7, 3))

X <- X[order(X[, 1], X[, 2]),]

Nicolas Baradel | Langage R

63

Programmation efficace
Le langage vectoriel

I On dira qu’une fonction f est vectorielle si f prend un ou des
vecteurs en argument (et éventuellement d’autres arguments de
taille 1) et renvoie un vecteur où une fonction a été appliquée
élément par élément. C’est le cas par exemple de la fonction
sqrt ou exp.

I Soit la boucle de la forme :
I for(i in I)

I x[i] <- f(i,x[i],z[i])

I Si f est vectorielle alors cette boucle est toujours évitable, la
solution est :

I x <- f(1:length(x),x,z)

Nicolas Baradel | Langage R

64

Programmation efficace
Le langage vectoriel

I Par exemple, si nous souhaitons affecter à x le carré de i , la
solution est

I x <- (1:length(x))�2

I Ou alors, associer à xi l’exponentielle d’un élément zi d’un
vecteur z auquel on ajoute la constante 2, la solution est

I x <- exp(z) + 2

I Il se peut que nous souhaitions modifier x uniquement sur une
partie de ses indices. Par exemple, quelque chose de la forme

I for(i in I)

I if(h(i,x[i],z[i]))

I x[i] <- f(i,x[i],z[i])

I où h est une fonction vectorielle qui renvoie TRUE ou FALSE, f
n’est appliquée que sur un sous-ensemble de I où h est vérifiée

Nicolas Baradel | Langage R

65

Programmation efficace
Le langage vectoriel

I Si f et h sont vectorielles alors cette boucle est toujours
évitable, la solution est :

I ind <- h(1:length(x),x,z)

I x[ind] <- f((1:length(x))[ind], x[ind], z[ind])

Nicolas Baradel | Langage R

66

Programmation efficace
Le langage vectoriel

I Nous pouvons souhaiter modifier x uniquement sur les 30
premiers indices et leur affecter z, dans ce cas

I ind <- 1:length(x) <= 30

I x[ind] <- z[ind]

I Dans ce cas très simple nous aurions pu écrire
I x[1:30] <- z[1:30]

I Un autre exemple : nous souhaitons affecter la valeur 0 à tous
les indices où x vaut NA. Dans ce cas

I ind <- is.na(x)

I x[ind] <- 0

I Ici, ind n’est utilisé qu’une seule fois, nous aurions pu écrire
directement

I x[is.na(x)] <- 0

Nicolas Baradel | Langage R

67

Programmation efficace
Le langage vectoriel

I Il ne faut pas être effrayé par le fait d’écrire x dans x . Ce qui est
à l’intérieur n’est que le calcul d’un vecteur de logical en
fonction de x (s’il vaut NA ou non).

I Ensuite, nous effectuons une opération dans les indices de x
vérifiant cette condition. Par exemple

I (x <- c(7, 2, NA, 3, -1, NA))

I [1] 7 2 NA 3 -1 NA

I x[is.na(x)] <- 0

I x

I [1] 7 2 0 3 -1 0

Nicolas Baradel | Langage R

68

Programmation efficace
Le langage vectoriel

I Un autre exemple : là où la somme de x et y (deux vecteurs de
même taille) est supérieure à z, affecter à x le modulo de z par
2, sinon celui de y par 2

I ind <- x + y > z

I x[ind] <- z[ind]%%2

I x[!ind] <- y[!ind]%%2

I Rappel : le point d’exclamation est le NON logique, il inverse les
TRUE et FALSE

I Nous affectons, en fonction de x + y > z, à chaque élément, soit
z%%2, soit y%%2

Nicolas Baradel | Langage R

69

Programmation efficace
Le langage vectoriel

I Un dernier exemple intervient dans la classification d’une
variable.

I Par exemple, si x est inférieur à un seuil a fixé, nous le mettons
dans la classe 0, s’il est supérieur à b, nous le mettons dans la
classe 2, et enfin s’il est entre les deux, dans la classe 1.

I y <- rep(1, length(x))

I y[x < a] <- 0

I y[x > b] <- 2

Nicolas Baradel | Langage R

70

Programmation efficace
Le langage vectoriel

I Pour les conditions, les opérateurs && et || ne sont pas
vectoriels. Les versions vectorielles correspondantes sont & et |.

I Pour tester si une condition est vérifiée sur tous les éléments
d’un vecteur, on utilisera la fonction all.

I Pour tester si une condition est vérifiée sur au moins un élément
d’un vecteur, on utilisera la fonction any.

Nicolas Baradel | Langage R

71

Exercices
Énoncés

I Retour sur un exercie passé : Écrire une fonction gammaEuler qui
approxime à l’ordre n ∈ N∗ la constante γ d’Euler définie par la
limite :

γ = lim
n→+∞

(
n∑

k=1

1
k
− log(n)

)
.

On pourra vérifier avec -digamma(1) qui vaut γ. On veillera à ne
pas utiliser de boucle.

Nicolas Baradel | Langage R

72

Exercices
Énoncés

I Retour sur un exercice passé : Soit X une variable aléatoire dont
la densité est définie par la fonction f :

∀x ∈ R, f (x) =
1√

2π(1 + x2)
exp

(
− tan2(x)

2

)
1]−π

2 ,
π
2 [(x)

où 1 est la fonction indicatrice (elle vaut 1 si x est dans
l’intervalle, 0 sinon). Écrire cette fois-ci la fonction f de manière
vectorielle sous R afin qu’elle puisse prendre un vecteur x et
renvoie un vecteur de même taille f (x) où f est appliquée
élément par élément. On veillera à ne pas utiliser de boucle.

Nicolas Baradel | Langage R

73

Exercices
Énoncés

I Écrire une fonction qui prend une matrice X = (xi,j) de taille
n ×m en argument et qui renvoie un vecteur de taille m où
l’élément j est la moyenne sur i de (cos(xi,j)

i)1≤i≤n (attention,
bien voir que le cosinus est élevé à la puissance i).

I Écrire une fonction qui prend une matrice carrée X = (xi,j) de
taille n × n en argument et renvoie la trace de la matrice X . La
trace de la matrice X est la somme des éléments diagonaux
définie par

Trace(X) =
n∑

k=1

xk,k .

Nicolas Baradel | Langage R

74

Exercices
Correction

I gammaEuler <- function(n)

return(sum(1/(1:n)) - log(n))

I f <- function(x)

{

y <- numeric(length(x))

ind <- x > -pi/2 & x < pi/2

z <- x[ind]

y[ind] <- exp(-0.5*tan(z)�2)/(sqrt(2*pi)*(1+z�2))

return(y)

}

Nicolas Baradel | Langage R

75

Exercices
Correction

I f <- function(X)

return(colMeans(cos(X)�row(X)))

Nicolas Baradel | Langage R

76

Simulation de variables aléatoires
Le générateur aléatoire

I R utilise une suite de nombres pseudo-aléatoires générés par
une suite arithmétique.

I L’algorithme par défaut utilisé est le Mersenne- Twister. Sa
période est de 219937 − 1 ce qui vaut environ 106000.

I Cet algorithme est souvent considéré comme le meilleur
compromis entre efficacité à simuler les variables aléatoires et
qualité du générateur (indépendance entre les simulations, la loi
simulée est bien la loi uniforme).

I Le générateur s’initialise tout seul
I Il est possible de choisir sa graîne avec set.seed
I Cela permet de reproduire les mêmes simulations à des fin de

debug.

Nicolas Baradel | Langage R

77

Simulation de variables aléatoires
Les quatre fonctions

À la loi d’une variable aléatoire, dont le nom donné par R est nom,
sont associées quatre fonctions :
I dnom

I pnom

I qnom

I rnom

Nicolas Baradel | Langage R

78

Simulation de variables aléatoires
Les quatre fonctions

I La première, dnom, prend en premier argument un nombre
décimal puis d’éventuels paramètres pour les arguments
suivants. Cette fonction évalue la densité de la loi nom en
l’argument passé en paramètre.

I Pour les variables aléatoires discrètes, cette densité est
P(nom = •) où • est le point en lequel dnom est évaluée. Dans le
cas des variables aléatoires continues, la densité est celle au
sens habituel du terme.

Nicolas Baradel | Langage R

79

Simulation de variables aléatoires
Les quatre fonctions

I La deuxième fonction, pnom, fonctionne comme dnom sauf qu’elle
n’évalue pas la densité mais la fonction de répartition

I La fonction qnom prend en premier argument un nombre α dans
l’intervalle [0,1] et lui associe le quantile d’ordre α de la loi nom

I Enfin, la fonction rnom permet de générer des simulations
indépendantes de la loi nom. Son premier argument est le
nombre souhaité de simulations

Nicolas Baradel | Langage R

80

Simulation de variables aléatoires
Les quatre fonctions

I La fonction dnom possède un argument facultatif log. Par défaut,
il vaut FALSE, mais s’il est mis à TRUE, ce n’est pas la densité qui
est renvoyée mais le logarithme de la densité

I Il est préférable d’écrire dnom(x, log = TRUE) que
log(dnom(x)), un exemple est donné dans le cas de la loi
normale

I Nous voyons maintenant les différentes lois sous R

Nicolas Baradel | Langage R

81

Simulation de variables aléatoires
Les quatre fonctions

I La loi uniforme U([a,b]) est nommée unif.
I Sa fonction densité évaluée en x = (xi)1≤i≤n s’évalue avec

dunif(x, a, b)

I Sa fonction de répartition s’évalue avec punif(x, a, b)

I Ses quantiles (avec xi ∈ [0,1]) s’évalue avec qunif(x, a, b)

I La simulation de n ∈ N variables aléatoires i.i.d. se fait avec
runif(n, a, b)

I Nous ne donnons qu’après la fonction de simulation des lois, les
trois autres se déduisent de la même manière

Nicolas Baradel | Langage R

82

Simulation de variables aléatoires
Les quatre fonctions

I La loi binomiale B(m,p) : rbinom(n, m, p)

I La loi de Poisson P(a) : rpois(n, a)

I La loi géométroque issue de 0 G(p) : rgeom(n, p)

I La loi binomiale négative BN (m,p) : rnbinom(n, m, p)

I La loi normale N (m, s2) : rnorm(n, m, s)

I La loi du Khi-2 X (d) : rchisq(n, d)

I La loi de student St(d) : rt(n, d)

Nicolas Baradel | Langage R

83

Simulation de variables aléatoires
Les quatre fonctions

I La loi log-normale LN (m, s2) : rlnorm(n, m, s)

I La loi exponentielle E(b) : rexp(n, b)

I La loi gamma G(a,b) : rgamma(n, a, b)

I La loi de WeibullW(a,b) : rweibull(n, a, b)

I La loi Beta B(a,b) : rbeta(n, a, b)

I La loi de Cauchy C(a,b) : rcauchy(n, a, b)

I La loi de Fisher F(d , k) : rf(n, d, k)

Nicolas Baradel | Langage R

84

Simulation de variables aléatoires
Ré-échantillonnage

I Ré-échantillonner, c’est créer un nouvel échantillon à partir d’un
échantillon initial

I Soit (xi)1≤i≤n, il s’agit de tirer uniformément dans l’échantillon
I Chaque xi a une probabilité de 1

n , cela peut amener des valeurs
multiples

I Par défaut il n’y a pas de remise, il s’agit juste de tirer l’ordre
aléatoirement

I x <- c(1,2,3,5,8,13,21)

I sample(x)

[1] 8 2 3 21 1 13 5

I sample(x, replace = TRUE)

[1] 3 5 1 13 3 2 8

I sample(x, replace = TRUE, prob = c(0.3, 0.3, 0.1, 0.1,

0.1, 0.1, 0))

[1] 8 5 1 2 1 2 5

Nicolas Baradel | Langage R

85

Simulation de variables aléatoires
Vecteurs gaussiens

I La fonction qui va nous permettre de simuler des vecteurs
gaussiens se situe dans le package MASS

I Ce package est déjà présent dans R, on le charge avec
library(MASS)

I La fonction qui va nous permettre de simuler des vecteurs
gaussiens est mvrnorm

I Lon premier argument est, comme d’habitude, le nombre n ∈ N
de simulations

I Le deuxième argument est un vecteur de taille d qui est le
vecteur moyenne dans Rd

I Le troisième argument est une matrice symétrique qui est la
matrice de variance-covariance dans Sd

Nicolas Baradel | Langage R

86

Simulation de variables aléatoires
Vecteurs gaussiens

I Pour simuler n variables aléatoires de loi N (m,S) avec m ∈ Rd

et S ∈ Sd , on utilise :
I library(MASS)

n <- 300

m <- c(1, 2)

S <- matrix(c(1,0.7,0.7,1), 2, 2)

X <- mvrnorm(n, m, S)

I X est une matrice à 2 colonnes et n lignes
I On peut obtenir la moyenne de chaque composante avec

colMeans et regarder la matrice de variance-covariance avec var

Nicolas Baradel | Langage R

87

Exercices
Énoncés

I Estimons π par méthode de Monte-Carlo. Pour ce faire, prenons
le carré unité [−1;1]2 et le disque de rayon 1 et de centre 0 de ce
carré. L’aire du carré est 4, l’aire du disque est π. Si on tire
uniformément dans le carré (ce qui revient à tirer deux lois
uniformes dans [-1,1], une étant l’axe des abscisses, l’autre l’axe
des ordonnées), la probabilité d’être dans le disque est π4 . Écrire
une fonction qui prend en argument le nombre de simulations n
et qui renvoie une estimation π.

Nicolas Baradel | Langage R

88

Exercices
Énoncés

I Vérifions le théorème de la limite centrale. Simulez n échantillons
de taille m = 20 de loi G(α, β) avec (α, β) = (1,1). Calculez la
moyenne de chacun des n échantillons de taille m, centrés
réduits avec la vraie moyenne et le vrai écart-type, et comparez
les quantiles de la distribution avec celle de la loi normale aux
ordre α = 0.5%,1%,5%,25%,50%,75%,95%,99%,99.5%

Nicolas Baradel | Langage R

89

Exercices
Correction

I MCpi <- function(n)

{

return(4*mean(runif(n,-1,1)�2 + runif(n,-1,1)�2 <=

1))

}

Nicolas Baradel | Langage R

90

Exercices
Correction

I n <- 10�6

m <- 25

X <- matrix(rgamma(n*m, 1, 1), n, m)

z <- sqrt(m)*(rowMeans(X) - 1)

p <- c(0.005, 0.01, 0.05, 0.1, 0.25, 0.5, 0.75, 0.9,

0.95, 0.99, 0.995)

quantile(z, p)

qnorm(p)

Nicolas Baradel | Langage R

91

Exercices
Correction

I X <-

read.table("http://nicolasbaradel.fr/R/donnees/SPX_m.txt",

header = TRUE, dec = ",", colClasses ="numeric")

Nicolas Baradel | Langage R

Fin du cours !

